MMA 32 Topology

Dr S. Srinivasan

Assistant Professor, Department of Mathematics, Periyar Arts College, Cuddalore - 1, Tamil nadu

Email: smrail@gmail.com Cell: 7010939424

★ ∃ ► < ∃ ►</p>

Definition 1.

- A **topology** on a set X is a collection τ of subsets of X having
- the following properties:
- (1) ϕ and X are in τ .
- (2) The union of the elements of any sub collection of τ is in τ .
 - i.e., if $\{U_{\alpha}\}_{\alpha\in A}\subset \tau$ then $\bigcup_{\alpha\in A}U_{\alpha}\in \tau$.
- (3) The intersection of the elements of any finite sub collection of τ is in τ .
 - i.e., if $U_1, U_2, \ldots, U_n \in \tau$ then $\bigcap_{i=1}^n U_i \in \tau$.

Definition 2.

A set X for which a topology au has been specified is

called a topological space.

Note:

- 1. An ordered pair (X, τ) consisting a set and a topology τ on X.
- 2. A subset of X which is in τ is called an **open set**.
 - i.e., if $U \in \tau \Rightarrow U$ is an open set of X.

Example 1. Let $X = \{a, b, c\}$.

Here We list 9 topologies on X. There are

(1) The trivial topology $\tau_1 = \{\phi, X\}$.

$$\begin{array}{l} (2) \ \tau_2 = \{\phi, \{a\}, X\}. \\ (3) \ \tau_3 = \{\phi, \{a, b\}, X\}. \\ (4) \ \tau_4 = \{\phi, \{a\}, \{a, b\}, X\}. \\ (5) \ \tau_5 = \{\phi, \{a\}, \{a, b\}, \{c\}, X\}. \\ (6) \ \tau_6 = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}. \\ (7) \ \tau_7 = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}. \\ (8) \ \tau_8 = \{\phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, X\}. \end{array}$$

(9) The **discrete topology** $\tau_9 = P(X)$ (power set with 8 elements).

(日)

Example. Let $X = \{a, b, c\}$.

Here are some collections of subsets of *X* that are **not topologies**.

(1) $\{\{a\}, \{c\}, \{a, b\}, \{a, c\}\}$ does not contain ϕ and X.

(2) $\{\phi, \{a\}, \{b\}, X\}$ is not closed under union.

(3) $\{\phi, \{a, b\}, \{a, c\}, X\}$ is not closed under finite intersection.

(4回) (4回) (4回) (回)

Example 2. Let X be a set.

 τ_f be the collection of all subsets U of X such that

 $X - U = X \setminus U = \{x \in X \mid x \notin U\}$ is either finite or all of X.

Then τ_f is a topology on X, called the **finite complement topology**.

Example 3. Let X be a set.

 au_c be the collection of all subsets U of X such that

 $X \setminus U$ is either countable or all of X.

Then τ_c is a topology on X.

・ 回 ト ・ ヨ ト ・ ヨ ト …

Definition 3.

Suppose that τ and τ' are two topologies on a given set X.

If $\tau' \supset \tau$ then τ' is **finer** then τ .

If τ' properly contains τ then τ' is **strictly finer** than τ .

We also say that τ is **coarser** then τ' , or τ is **strictly coarser** then τ' , respectively.

We say τ is **comparable** with τ' if either $\tau' \supset \tau$ or $\tau \supset \tau'$

Note:

- 1. If τ' is finer than τ then τ' has more open sets than $\tau.$
- 2. The trivial topology is coarser than any other topology, and the discrete topology is finer than any other topology.

- 1. Consider the nine topologies on the set $X = \{a, b, c\}$ indicated in Example 1. Compare them, i.e.,for each pair of topologies, determine whether they are comparable, and if so, which is the finer.
- 2. If $\{\tau_{\alpha}\}$ is a family of topologies on X, show that $\bigcap \tau_{\alpha}$ is a topology on X. Is $\bigcup \tau_{\alpha}$ a topology on X?
- 3. If $X = \{a, b, c\}$, let $\tau_1 = \{\phi, X, \{a\}, \{a, b\}\}$ and $\tau_2 = \{\phi, X, \{a\}, \{b, c\}\}$. Find the smallest topology containing τ_1 and τ_2 , and the largest topology contained in τ_1 and τ_2 .

- 4. Let $\{\tau_{\alpha}\}$ be a family of topologies on X. Show that there is a unique smallest topology on X containing all the collections τ_{α} , and a unique largest topology contained in all τ_{α} .
- 5. Let X = {a, b, c, d, e}. Determine whether or not each of the following classes of subsets of X is a topology on X.
 (i) τ₁ = {φ, X, {a}, {a, b}, {a, c}}
 (ii) τ₂ = {φ, X, {a, b, c}, {a, b, d}, {a, b, c, d}}
 (iii) τ₃ = {φ, X, {a}, {a, b}, {a, c, d}, {a, b, c, d}}

• < = • < = •

Definition 1.

Let X be a set.

A basis for a topology on X is a collection \mathcal{B} of subsets of X

(called basis elements) such that

(1) For each $x \in X,$ there is at least one basis element $B \in \mathcal{B}$

such that $x \in B$.

(2) If $x \in B_1 \cap B_2$ where $B_1, B_2 \in \mathcal{B}$ then there is a $B_3 \in \mathcal{B}$

such that $x \in B_3$ and $B_3 \subset B_1 \cap B_2$

Definition 2.

The topology ${\mathcal T}$ generated by ${\mathcal B}$ is defined as follows:

A subset U of X is said to be open in X (i.e., $U \in T$)

if for each $x \in U$ there is a basis element $B \in \mathcal{B}$ such that

 $x \in B$ and $B \subset U$.

Note :

- 1. Therefore each basis element is in $\ensuremath{\mathcal{T}}$
- 2. In fact, the topology generated by basis $\ensuremath{\mathcal{B}}$ is a topology.

3 1 4 3 1

Example 1. A basis for the standard topology on \mathbb{R}^2

is given by the set of all circular regions in \mathbb{R}^2 :

$$\mathcal{B} = \{B((x_0, y_0), r) \mid r > 0\}$$
 where
 $B((x_0, y_0), r) = \{(x, y) \in \mathbb{R}^2 \mid (x - x_0)^2 + (y - y_0)^2 < r^2\}.$

Example 2. If X is any set.

 $\mathcal{B} = \{\{x\} \mid x \in X\}$

is a basis for the discrete topology on X.

Theorem A.

Let X be a set and

 \mathcal{B} be a basis for a topology \mathcal{T} on X.

Define $\mathcal{T} = \{ U \subset X \mid x \in U \text{ implies } x \in B \subset U \text{ for some } B \in \mathcal{B} \}.$

the topology generated by \mathcal{B} .

Then \mathcal{T} is in fact a topology on X.

Lemma 1. Let X be a set.

Let \mathcal{B} be a basis for a topology \mathcal{T} on X.

Then \mathcal{T} equals the collection of all unions of elements of \mathcal{B} .

Proof.

By Theorem A above, all elements of \mathcal{B} are open and so in \mathcal{T} . Since \mathcal{T} is a topology, then by part (2) of the definition,

any union of elements of ${\cal B}$ are in ${\cal T}$.

 $\Rightarrow \mathcal{T}$ contains all unions of elements of \mathcal{B} .

Conversely, given $U \in \mathcal{T}$.

For each $x \in U$.

Choose $B_x \in \mathcal{B}$ such that $x \in B_x \subset U$ (\mathcal{T} generated by \mathcal{B}).

Then $U = \bigcup_{x \in U} B_x$.

i.e., U equals a union of elements of \mathcal{B} .

Since U is an arbitrary element of \mathcal{T} ,

then all elements of \mathcal{T} are unions of elements of \mathcal{B} .

Lemma 2. Let (X, \mathcal{T}) be a topological space.

Suppose that C is a collection of open sets of X such that

for each open subset $U \subset X$ and each $x \in U$, there is an element

 $C \in C$ such that $x \in C \subset U$.

Then C is a basis for the topology T on X.

Proof. First we show that C is a basis.

(i) By the definition of basis, for $x \in X$.

(since X itself is an open set)

Then (by hypothesis) there is an element $C \in C$ such that $x \in C \subset X$.

(ii) For the second part of the definition of basis.

```
Let x \in C_1 \cap C_2 where C_1, C_2 \in C.
```

Since C_1 and C_2 are open then $C_1 \cap C_2$ is open.

Then by hypothesis, there is an element $C_3 \in C$ such that

 $x \in C_3 \subset C_1 \cap C_2$.

Thus C is a basis for a topology on X.

Let \mathcal{T}' be the topology on X generated by \mathcal{C} .

To prove that $\mathcal{T} = \mathcal{T}'$.

First, Let $U \in \mathcal{T}$ and $x \in U$.

Since \mathcal{C} is a basis for topology \mathcal{T} ,

 \Rightarrow there is an element $C \in C$ such that $x \in C \subset U$.

i.e., $U \in \mathcal{T}'$. (by the def of *topology generated by* \mathcal{C})

Hence $\mathcal{T} \subset \mathcal{T}'$.

Conversely,

If W belongs to \mathcal{T}' .

Then W is a union of elements of C. (by Lemma 1)

Now each element of \mathcal{C} is an element of \mathcal{T} .

(by the definition of topology generated by)

(and a union of open sets is open)

 \Rightarrow *W* belongs to *T*.

That is, $\mathcal{T}' \subset \mathcal{T}$.

Therefore, T = T'.

★ ∃ ► < ∃ ►</p>

Lemma 3. Let \mathcal{B} and \mathcal{B}' be bases for topologies \mathcal{T} and \mathcal{T}' , respectively,

on X. Then the following are equivalent:

```
(1) \mathcal{T}' is finer than \mathcal{T}.
```

(2) For each $x \in X$ and each basis element $B \in \mathcal{B}$ containing x, there is

a basis element $B' \in \mathcal{B}'$ such that $x \in B' \subset B$.

Proof. $(2) \Rightarrow (1)$

Given $U \in \mathcal{T}$, let $x \in U$.

Since \mathcal{B} generates \mathcal{T} , there is $B \in \mathcal{B}$ such that $x \in B \subset U$.

By hypothesis (2), there is $B' \in \mathcal{B}'$ such that $x \in B' \subset B$.

 $\Rightarrow x \in B' \subset U.$

 $\Rightarrow U \in \mathcal{T}'.$ (By the definition of *topology generated by* $\mathcal{B}'.$) $\Rightarrow \mathcal{T} \subset \mathcal{T}'.$

- E - - E -

 $(1) \Rightarrow (2)$

Let $x \in X$ and $B \in \mathcal{B}$ where $x \in B$.

Since \mathcal{B} generates \mathcal{T} , then $B \in \mathcal{T}$.

By hypothesis (1), $\mathcal{T} \subset \mathcal{T}'$ and so $B \in \mathcal{T}'$.

Since \mathcal{T}' is generated by \mathcal{B}' .

Then there is (by definition) $B' \in \mathcal{B}$ such that $x \in B' \subset B$.

Definition 3.

Let $\ensuremath{\mathcal{B}}$ be the set of all open intervals in the real line:

$$\mathcal{B} = \{(a, b) \mid a, b \in \mathbb{R}, a < b\},$$
 where
 $(a, b) = \{x \mid a < x < b\}$

The topology generated by ${\mathcal B}$ is the standard topology on ${\mathbb R}.$

æ

イロト 不得 トイヨト イヨト

Definition 4.

Let \mathcal{B}' be the set of all half open intervals.

$$\mathcal{B}' = \{[a, b) \mid a, b \in \mathbb{R}, a < b\},$$
 where
 $[a, b) = \{x \mid a \le x < b\}$

The topology generated by \mathcal{B}' is called the lower limit topology on $\mathbb{R}.$

It is denoted by \mathbb{R}_{ℓ} .

Definition 5.

Let $K = \{1/n \mid n \in N\}.$

 $\mathcal{B}'' = \{(a,b) \mid a,b \in \mathbb{R}, a < b\} \cup \{(a,b) - K \mid a,b \in \mathbb{R}, a < b\}.$

The topology generated by \mathcal{B}'' is the *K*-topology on \mathbb{R} .

It is denoted by $\mathbb{R}_{\mathcal{K}}$.

э

イロト 不得 トイヨト イヨト

Lemma 4. The topologies of \mathbb{R}_{ℓ} and \mathbb{R}_{K} are each strictly finer

than the standard topology on \mathbb{R} .

But are not comparable with one another.

Proof.

Let $\mathcal{T}, \mathcal{T}'$, and \mathcal{T}'' be the topologies of $\mathbb{R}, \ \mathbb{R}_{\ell}$ and $\mathbb{R}_{\mathcal{K}}$ respectively.

Given a basis element (a, b) for \mathcal{T} and $x \in (a, b)$,

Then the basis element $[x, b) \in \mathcal{T}'$ contains x and lies in (a, b)

i.e., $x \in [x, b) \subset (a, b)$.

On the other hand, given basis element $[x, d) \in \mathcal{T}'$, there is no

open interval (a, b) containing x which is a subset of [x, d).

By Lemma 3.(2) $\Rightarrow \mathcal{T}'$ is strictly finer than \mathcal{T} .

Given a basis element (a, b) for \mathcal{T} and $x \in (a, b)$.

Then this same basis element $(a, b) \in \mathcal{T}''$ contains x.

Which satisfies $x \in (a, b) \subset (a, b)$.

- 4 回 ト 4 三 ト 4 三 ト

On the other hand, given the basis element C = (-1, 1) - K for \mathcal{T}'' . Then the point $0 \in C$.

But there is no open interval (a, b) containing 0

which is a subset of C. (For example $(\frac{-1}{2}, \frac{1}{2}) \notin C$)

By Lemma 3.(2) $\Rightarrow \mathcal{T}''$ is strictly finer than \mathcal{T} .

イロト イヨト イヨト --

Show that topologies of \mathbb{R}_{ℓ} and \mathbb{R}_{K} are not comparable.

Let \mathcal{T}_{ℓ} and $\mathcal{T}_{\mathcal{K}}$ be the topologies of \mathbb{R}_{ℓ} and $\mathbb{R}_{\mathcal{K}}$, respectively.

It suffices to show that neither of the topologies is

finer than the other.

i.e., to prove $\mathcal{T}_{\ell} \not\subset \mathcal{T}_{\mathcal{K}}$ and $\mathcal{T}_{\mathcal{K}} \not\subset \mathcal{T}_{\ell}$.

Given $x \in \mathbb{R}$ where a < x < b is contained in the basis

element [x, b) of \mathbb{R}_{ℓ} .

However, every basis element of $\mathbb{R}_{\mathcal{K}}$ is an open interval

(in some cases, minus the set K).

There is no open interval (a, b) that contains x and

is contained in [x, b) because a < x.

By Lemma 3(2), $\mathcal{T}_{\mathcal{K}}$ is not finer than \mathcal{T}_{ℓ} .

• • = • • = •

Conversely, 0 is contained in the basis element (-1,1) - K of \mathcal{T}_{K} .

Any basis element [a, b) of \mathcal{T}_{ℓ} contains 0, where a < 0 and b > 0.

But this basis element cannot be contained in (-1,1) - K.

Given b > 0, let $k \in \mathbb{N}$ where k > 1/b.

It follows that 0 < 1/k < b, $\Rightarrow 1/k \in [a, b)$.

But $1/k \notin (-1, 1) - K$.

Again by Lemma 3(2), \mathcal{T}_{ℓ} is not finer than $\mathcal{T}_{\mathcal{K}}$.

Hence \mathcal{T}_{ℓ} and \mathcal{T}_{K} are not comparable.

イロト イヨト イヨト イヨト 三日

Definition 5.

A subbasis S for a topology on set X is a collection of

subsets of X whose union equals X.

The topology generated by the subbasis $\mathcal S$ is defined to be the

collection \mathcal{T} of all unions of finite intersections of elements of \mathcal{S} .

Example 1.

Observe that every open interval (a, b) in the line $\mathbb R$ is the intersection of

two infinite open intervals (a,∞) and $(-\infty,b)$

$$(a,b) = (-\infty,b) \cap (a,\infty).$$

But the open intervals form a base for the usual topology on \mathbb{R} .

Hence the class $\mathcal S$ of all infinite open intervals is a subbase for $\mathbb R$.

Example 2.

If
$$X = \{a, b, c, d\}$$
 and $S = \{\{a, b, c\}, \{b, c, d\}\}$ then the topology generated by S is

$$\tau = \{ \phi, \{a, b, c\}, \{b, c, d\}, \{b, c\}, \{a, b, c, d\} \}.$$

3

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Theorem B.

Let S be a subbasis for a topology on X.

Define \mathcal{T} to be all unions of finite intersections of elements of \mathcal{S} .

Then \mathcal{T} is a topology on X.

Definition 1. Intervals

Let X be a set with a simple order relation < .

The following sets are intervals in X:

$$(a, b) = \{x \in X | a < x < b\} \text{ (open intervals)}$$
$$(a, b] = \{x \in X | a < x \le b\} \text{ (half-open intervals)}$$
$$[a, b) = \{x \in X | a \le x < b\} \text{ (half-open intervals)}$$
$$[a, b] = \{x \in X | a \le x \le b\} \text{ (closed intervals)}.$$

Definition 2.

Let X be a set with a simple order relation and assume X hax

more than one element.

- Let \mathcal{B} be the collection of all sets of the following types:
- (1) All open intervals (a, b) in X.
- (2) All intervals of the form $[a_0, b)$ where a_0 is the least element of X.
- (3) All intervals of the form $(a, b_0]$ where b_0 is the greatest element of X.

The collection \mathcal{B} is a basis for a topology on X called the order topology.

Example 1.

The standard topology on ${\mathbb R}$ is the order topology based on the

usual *less than* order on \mathbb{R} .

Example 2.

We can put a simple order relation on \mathbb{R}^2 as follows:

(a,b) < (c,d) if either

(1) a < c, or

(2) a = c and b < d.

This is often called the lexicographic ordering

A B A A B A

Definition 3.

If X is a set with a simple order relation <, and $a \in X$ then there are

four subsets of X, called rays determined by a.

They are the following:

 $(a, \infty) = \{x \in X | x > a\}$ (open rays) $(-\infty, a) = \{x \in X | x < a\}$ (open rays) $[a, \infty) = \{x \in X | x \ge a\}$ (closed rays) $(-\infty, a] = \{x \in X | x \le a\}.$ (closed rays)

米田 とくほとくほど

If X and Y are topological spaces, then there is a

natural topology on the Cartesian product.

$$X \times Y = \{(x, y) | x \in X, y \in Y\}.$$
 (product topology)

Definition 1. Basis

Let X and Y be topological spaces.

The product topology on set $X \times Y$ is the topology having as basis

the collection \mathcal{B} of all sets of the form $U \times V$,

where U is an open subset of X and V is an open subset of Y.

Theorem 1. If \mathcal{B} is a basis for the topology of X and \mathcal{C} is a basis

for the topology of Y, then the collection

 $D = \{B \times C | B \in \mathcal{B} \& C \in \mathcal{C}\}$

is a basis for the topology of $X \times Y$.

Proof.

Let $W \in X \times Y$ be an open set.

Let $(x, y) \in W$.

By the definition of product topology, there is a basis element U imes V,

where U is open in X and V is open in Y, such that $(x, y) \in U \times V \subset W$.

 $\Rightarrow x \in U$ and $y \in V$.

Since \mathcal{B} and \mathcal{C} are bases for X and Y, respectively.

Then there are open sets $B \in \mathcal{B}$ and $C \in \mathcal{C}$ such that $x \in B \subset U$

and $y \in C \subset V$.

Notice that $B \times C$ is an element of the basis for the product topology

and so open and $B \times C \in D$.

That is, $(x, y) \in B \times C \subset W$ where $B \times C \in D$.

By Lemma 2, D is a basis for the product topology.

Theorem 2. The set

$$S = \{\pi_1^{-1}(U) | U ext{ is open in } X\} \cup \{\pi_2^{-1}(V) | V ext{ is open in } Y\}$$

is a subbasis for the product topology on $X \times Y$.

Proof. Let τ denote the product topology on $X \times Y$.

Let τ' be the topology generated by set S.

For open sets $U \subset X$ and $V \subset Y$, we have

 $\pi_1^{-1}(U) = U imes Y$ and $\pi_2^{-1}(V) = X imes V$ are elements of the basis

for the product topology τ .

$$\Rightarrow \pi_1^{-1}(U), \pi_2^{-1}(V)$$
 are open in τ .

- 4 四 ト - 4 回 ト

Hence $\mathcal{S} \subset \tau$.

So arbitrary unions of finite intersections of elements of S are in τ .

Therefore, by Lemma 1, $\tau' \subset \tau$.

On the other hand, every basis element $U \times V$ for τ is of the form

$$U \times V = (U \times Y) \cap (X \times V) = \pi_1^{-1}(U) \cap \pi_2^{-1}(V)$$

(a finite intersection of elements of S)

Thus $U \times V$ is in the topology τ' generated by S.

That is, $\tau \subset \tau'$ and hence $\tau = \tau'$.

So the collection of all unions of finite intersections of S is τ . Hence S is a subbasis for the product topology τ .

Definition 1.

Let X be a topological space with topology τ .

If Y is a subset of X, then the set

```
\tau_{\mathbf{Y}} = \{ \mathbf{Y} \cap \mathbf{U} \mid \mathbf{U} \in \tau \}
```

is a topology on Y called the subspace topology.

With this topology, Y is called a **subspace** of X.

Lemma 1. If \mathcal{B} is a basis for the topology of X then the set

 $\mathcal{B}_{\mathbf{Y}} = \{B \cap \mathbf{Y} | B \in \mathcal{B}\}$

is a basis for the subspace topology on Y.

Proof. Let U be open in X.

Let $y \in U \cap Y$.

Since \mathcal{B} is a basis for the topology of X, then there is a open set

 $B \in \mathcal{B}$ such that $y \in B \subset U$.

Then $y \in B \cap Y \subset U \cap Y$.

By Lemma 2, \mathcal{B}_Y is a basis for the subspace topology on Y.

Lemma 2. Let Y be a subspace of X. If U is open in Y and

Y is open in X, then U is open in X.

Proof.

Let Y be a subspace of X.

Let U be open in Y.

Then by above Lemma $U = Y \cap V$ for some set V open in X.

Since Y and V are both open in X.

 \Rightarrow *Y* \cap *V* = *U* is open in *X*.

Lemma 3. If A is a subspace of X and B is a subspace of Y,

then the product topology on $A \times B$ is the same as the topology

 $A \times B$ inherits as a subspace of $X \times Y$.

Proof.

Let $U \times V$ be a basis element for the product topology

on $X \times Y$.

Then $(U \times V) \cap (A \times B)$ is a basis element for the subspace

topology on $A \times B$.

Now $(U \times V) \cap (A \times B) = (U \cap A) \times (V \cap B)$.

Since $U \cap A$ and $V \cap B$ are open relative to A and B, respectively.

Then $(U \cap A) \times (V \cap B)$ is a basis element for the product topology

on $A \times B$.

So the basis for the subspace topology on $A \times B$ is a subset of the

basis for the product topology on $A \times B$.

Conversely,

A basis element for the product topology on $A \times B$ is of the form

 $(U \cap A) \times (V \cap B)$ where U and V are open in X and Y, respectively.

By the equality above, this is a basis element for

the subspace topology on $A \times B$.

So the basis for the product topology on $A \times B$ is a subset of the

basis for the subspace topology on $A \times B$.

Thus, the bases are the same and hence the topologies are the same.

Definition 2.

Given an ordered set X, a subset $Y \subset X$ is convex in X

if for each pair of points $a, b \in Y$ with a < b,

the entire interval (a, b) lies in Y.

Lemma 4. Let X be an ordered set in the order topology.

Let Y be a subset of X that is convex in X.

Then the order topology on Y is the same as the subspace

topology on Y.

Proof. By Theorem B, the set of all open rays form a subbasis

for the order topology on X.

Then the set $\mathcal{B}_S = \{(a, +\infty) \cap Y, Y \cap (-\infty, a) | a \in X\}$ is a subbasis

for the subspace topology on Y.

米国 とくほとくほど

Since *Y* is convex then for $a \in Y$, we have

 $(a, +\infty) \cap Y = \{a \in Y | x > a\}$ and $(-\infty, a) \cap Y = \{x \in Y | x < a\}$

and each of these is an open ray in Y.

If $a \notin Y$ then these two sets are either all of Y or are ϕ .

In all cases, each is open in the order topology and so

the order topology is a subset of the subspace topology.

Conversely, any open ray of Y equals the intersection of an open ray

of X with Y and so is open in the subspace topology on Y.

Since the open rays of Y are a subbasis for the order topology on Y.

By Theorem B, this topology is a subset of the subspace topology.

Therefore, the subspace topology on Y is the same as the order

topology on Y.

• • = • • = •

Definition 1. Closed

A subset A of a topological space X is closed if

set X - A is open.

Example 1.

The subset [a, b] of R is closed because its compliment

$$R - [a, b] = (-\infty, a) \cup (b, +\infty)$$
 is open.

Theorem 1. Let X be a topological space.

Then the following conditions hold:

(1) ϕ and X are closed.

(2) Arbitrary intersections of closed sets are closed.

(3) Finite unions of closed sets are closed

Proof of (1) follows: Since X and ϕ are open in X.

 \Rightarrow the compliments of ϕ and X are X and ϕ , respectively.

(i.e., $X - \phi = X$ and $X - X = \phi$)

Then by definition of closed, ϕ and X are closed in X.

▶ ★ Ξ ▶ ★ Ξ ▶

(2): Given a collection of closed sets $\{A_{\alpha}\}$.

$$X - \bigcap_{\alpha \in J} A_{\alpha} = \bigcup_{\alpha \in J} (X - A_{\alpha})$$
 (by DeMorgans law)

Since each A_{α} is closed. $\Rightarrow X - A_{\alpha}$ is open.

The right side of this equation is a union of open sets and so is open.

Therefore the left hand side is open.

By definition its compliment $\bigcap_{\alpha \in J} A_{\alpha}$ is closed.

.

(3): If A_i is closed for i = 1, 2, ..., n.

Consider the equation

 $X - \bigcup_{i=1}^{n} A_i = \bigcap_{i=1}^{n} (X - A_i)$ (by DeMorgans law)

The set on the right side is a finite intersection of open sets

and is therefore open.

So the left hand side is open.

By definition its compliment $\bigcup_{i=1}^{n} A_i$ is closed.

・ 回 ト ・ ヨ ト ・ ヨ ト ・

Definition 2.

If Y is a subspace of X, we say that a set A is closed in Y

if $A \subset Y$ is closed in the subspace topology of Y

that is, Y - A is open in the subspace topology of Y.

Theorem 2. Let *Y* be a subspace of *X*.

Then a set A is closed in Y if and only if it equals the intersection

of a closed set of X with Y.

Proof. Suppose $A = C \cap Y$ where C is closed in X.

Since C is closed in X, X - C is open in X.

 \Rightarrow (*X* - *C*) \cap *Y* is open in *Y*.

(by the definition of the subspace topology).

But $(X - C) \cap Y = Y - A$ (the compliment of A in Y)

 \Rightarrow *Y* – *A* is open in *Y*. Hence *A* is closed in *Y*.

ヘロト 人間 とくほとくほとう

Conversely, suppose that A is closed in Y.

Then Y - A is open in Y.

By definition of open in Y, there is an open set U in X such that

 $Y-A=Y\cap U.$

 $\Rightarrow X - U$ is closed in X.

But $A = Y \cap (X - U)$.

 \Rightarrow A is the intersection of Y and a closed set X – U of X.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Theorem 3. Let *Y* be a subspace of *X*.

If A is closed in Y and Y is closed in X, then A is closed in X.

Proof

Given A is closed in Y.

By Theorem 2, $A = Y \cap C$ where C is closed in X.

 \Rightarrow *Y* \cap *C* closed in *X*. (since *Y* is closed in *X*, by Theorem 1)

 \Rightarrow *A* is closed in *X*.

Definition 3. Given a subset *A* of a topological space *X*.

The interior of A, denoted Int(A), is the union of all

open subsets contained in A.

The closure of A, denoted \overline{A} or CI(A), is the intersection of all

closed sets containing A.

Lemma A. Let A be a subset of topological space X.

Then A is open if and only if A = Int(A).

A is closed if and only if $A = \overline{A}$.

Theorem 4. Let *Y* be a subspace of *X*.

Let $A \subset Y$ and denote the closure of A in X as \overline{A} .

Then the closure of A in Y equals $\overline{A} \cap Y$.

Proof. Let B denote the closure of A in Y.

To prove $B = \overline{A} \cap Y$.

Since \overline{A} is closed in X.

By Theorem 2, $\overline{A} \cap Y$ is closed in Y.

Given $A \subset Y$ and $A \subset \overline{A} \Rightarrow \overline{A} \cap Y$ contains A.

Since, by definition of closure, B equals the intersection of all

closed subsets of Y containing A.

 $\Rightarrow B \subset \overline{A} \cap Y.$

On the other hand, B is closed in Y.

Hence by Theorem 2, $B = C \cap Y$ for some closed set C in X.

Then C is a closed set of X containing A. $(A \subset B \subset C)$

Now \overline{A} is the intersection of all closed sets in X containing A.

$$\Rightarrow \bar{A} \subset C \Rightarrow \bar{A} \cap Y \subset C \cap Y = B.$$

 $\Rightarrow \bar{A} \cap Y \subset B$

Thus, $B = \overline{A} \cap Y$.

Theorem 5. Let *A* be a subset of the topological space *X*.

(a) Then $x \in \overline{A}$ if and only if every open set U containing

x intersects A.

- (b) Supposing the topology of X is given a basis, then $x \in \overline{A}$
 - if and only if every basis element B containing x intersects A.

Proof (a). Consider the contrapositive.

i.e., $x \notin \overline{A}$ if and only if there is a neighborhood U of x that does not intersect A.

If $x \notin \overline{A}$ then the set $U = X - \overline{A}$ is a neighborhood of x

which does not intersect A, as claimed.

Conversely, if there is a neighborhood U of x which does not

intersect A.

Then X - U is a closed set containing A.

By definition of the closure \overline{A} , the set X - U must contain \overline{A} .

Since $x \in U$, then $x \notin \overline{A}$.

Proof (b). Suppose $x \in \overline{A}$.

Then by part (a), every neighborhood of x intersects A.

Then every basis element B containing x intersects A.

```
(since each B is open).
```

Conversely, if every basis element containing x intersects A.

Then every neighborhood U of $x, \Rightarrow U$ contains a basis element

that contains x.

i.e., every neighborhood U of x intersects A.

i.e., $x \in \overline{A}$.

Definition 4.

If A is a subset of topological space X and if $x \in X$

then x is a limit point (or cluster point or point of accumulation) of A

if every neighborhood of x intersects A in some point other than

x itself.

Theorem 6. Let A be a subset of the topological space X.

Let A' be the set of all limit points of A.

Then $\bar{A} = A \cup A'$.

Proof. If $x \in A'$ then every neighborhood of x intersects A in a

point different from x.

Therefore, by Theorem 17.5(a), x belongs to \overline{A} .

Hence $A' \subset \overline{A}$.

Since $A \subset \overline{A}$, we have $A \cup A' \subset \overline{A}$.

Let $x \in \overline{A}$.

If $x \in A$, then $x \in A \cup A'$. $(\Rightarrow \overline{A} \subset A \cup A'.)$

If $x \notin A$ then, since $x \in \overline{A}$, every neighborhood U of x intersects A.

Because $x \in \overline{A}$ then U must intersect A in a point different from x.

Then $x \in A'$.

so that $x \in A \cup A'$.

Therefore, $\bar{A} \subset A \cup A'$.

Hence $\overline{A} = A \cup A'$, as claimed.

Corollary 7. A subset of a topological space is closed if and only if

it contains all its limit points. (i.e., $A = \overline{A}$)

Proof.

By Lemma 17.*A*, the set *A* is closed if and only if $A = \overline{A}$.

By Theorem 17.6, $\overline{A} = A \cup A'$.

 $\Rightarrow A = \overline{A}$ if and only if $A' \subset A$.

i.e., A is closed in X, if and only if it contains all its limit points.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Definition 5.

A topological space X is a Hausdorff space if for each pair of distinct

points $x_1, x_2 \in X$, there exist neighborhoods U_1 of x_1 and U_2 of x_2 such that $U_1 \cap U_2 = \phi$. **Theorem 8.** Every finite point set in a Hausdorff space X is closed.

Proof. Consider the set $\{x_0\}$.

Consider $x \in X$ where $x \neq x_0$.

Since X is a Hausdorff space, there are disjoint neighborhoods

U of x and V of x_0 .

 \Rightarrow *U* does not intersect {*x*₀}.

By Theorem 5(a), x is not in the closure of set $\{x_0\}$.

▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶

Since $x \neq x_0$ is an arbitrary element of X, the only points of

closure of $\{x_0\}$ is x_0 itself.

By Corollary 7, $\{x_0\}$ is a closed set.

Now consider a finite point set, say $\{x_0, x_1, ..., x_n\}$.

Write the set as $\{x_0\} \cup \{x_1\} \cup \ldots \cup \{x_n\}$.

Observe that each $\{x_i\}$ is closed in X.

Apply Theorem 17.1 part (3), $\{x_0, x_1, \dots, x_n\}$ is closed.

Thus, every finite point set in a Hausdorff space X is closed.

・ロト ・ 聞 ト ・ 国 ト ・ 国 ト …

Theorem 9. Let X be a space satisfying the T_1 Axiom.

Let A be a subset of X.

Then x is a limit point of A if and only if every neighborhood

of x contains infinitely many points of A.

Proof. Suppose every neighborhood of *x* intersects *A* in

infinitely many points.

Then every neighborhood of x intersects set A at a point other than x.

By definition, x is a limit point of A.

Conversely, suppose that x is a limit point of A.

Assume some neighborhood U of x intersects A in

only finitely many points.

Then U also intersects $A - \{x\}$ in finitely many points.

Say $\{x_1, x_2, ..., x_m\} = U \cap (A - \{x\}).$

Since X satisfy T_1 Axiom, $\Rightarrow \{x_1, x_2, ..., x_m\}$ is closed.

Therefore, set $X - \{x_1, x_2, ..., x_m\}$ is open in X.

イロト 不得 トイヨト イヨト 二日

Then $U \cap (X - \{x_1, x_2, ..., x_m\})$ is a neighborhood of x that

does not intersect the set $A - \{x\}$.

But this CONTRADICTS the hypothesis that x is a limit point of A.

So the assumption that U intersects A in finitely many points is false.

That is, any neighborhood of x must intersect A in infinitely

many points.

ヘロト 人間 とくほとくほとう

Theorem 10. If X is a Hausdorff space, then a sequence of

points of X converges to at most one point of X.

Proof.

Let $\{x_n\}$ be a sequence of points of X that converges to x.

Let $y \neq x$.

Let U and V be disjoint neighborhoods of x and y, respectively.

Since U is a neighborhood of x, then there is $N_1 \in \mathbb{N}$ such that $x_n \in U$ for all $n \in N_1$.

• • = • • = •

So there is no $N_2 \in \mathbb{N}$ such that for $n \in N_2$ we have $x_n \in V$

Since for $n \in N_1$, $x_n \in U$ and $U \cap V = \phi$.

That is, x_n does not converge to $y \neq x$.

Thus, x_n converges to at most one point x in X. $(x_n \rightarrow x)$

Theorem 11.

- (a). Every simply ordered set is a Hausdorff space in the order topology.
- (b). The product of two Hausdorff spaces is a Hausdorff space.
- (c). A subspace of a Hausdorff space is a Hausdorff space.

Proof (a). Suppose τ is an order topology on a given set *X*.

Let x_1, x_2 be distinct points in X where $x_1 < x_2$.

If x_2 is not the immediate successor of x_1 , there is some $c \in (x_1, x_2)$.

If x_1 and x_2 are not the smallest or largest elements of X, respectively.

Then there is some $a < x_1$ and $b > x_2$.

It follows that (a, c) and (c, b) are neighborhoods of x_1 and x_2

that are disjoint.

On the other hand, if (x_1, x_2) is empty, then (a, x_1) and (x_2, b)

are the appropriate disjoint neighborhoods.

(日)

If x_1 is the smallest element of X.

By the same argument as above.

Let us consider the neighborhood of x_1 be $[x_1, c)$ or $[x_1, x_2)$, as appropriate.

Similarly, if x_2 is the largest element of X.

Then the neighborhood of x_2 be $(c, x_2]$ or $(x_1, x_2]$, as appropriate.

Hence, every order topology is Hausdorff.

Proof (c). Let X be a Hausdorff space and Y a subset of X.

Given any distinct x_0, x_1 in $Y \subset X$.

Then there are neighborhoods U of x_0 and V of x_1 in X

that are disjoint.

By definition, $U' = U \cap Y$ and $V' = V \cap Y$ are open in Y.

Now $U' \cap V' = (U \cap Y) \cap (V \cap Y) = (U \cap V) \cap Y = \phi$.

Hence, U' and V' are disjoint neighborhoods of x_0 and x_1 in Y.

Hence, the subspace Y is Hausdorff.

イロト イヨト イヨト

Proof (b). Suppose X and Y are Hausdorff spaces.

Given distinct (x_0, y_0) , (x_1, y_1) of $X \times Y$, if $x_0 \neq x_1$ and $y_0 \neq y_1$.

Then there are neighborhoods A_0 of x_0 and A_1 of x_1 and

neighborhoods B_0 of y_0 and B_1 of y_1 that are disjoint.

Consider, $(A_0 \times B_0) \cap (A_1 \times B_1) = (A_0 \cap A_1) \times (B_0 \cap B_1) = \phi$.

Therefore $A_0 \times B_0$ and $A_1 \times B_1$ are disjoint neighborhoods

of (x_0, y_0) and (x_1, y_1) .

On the other hand, if $x_0 = x_1$ (in which case $y_0 \neq y_1$).

Let A be any neighborhood of x_0 and B_0 and B_1 be as above.

Consider, $(A \times B_0) \cap (A \times B_1) = (A \cap A) \times (B_0 \cap B_1) = A \cap \phi = \phi$.

Therefore $A \times B_0$ and $A \times B_1$ are disjoint neighborhoods

of (x_0, y_0) and (x_0, y_1) .

Similarly, there exist disjoint neighborhoods for (x_0, y_0) and

 (x_1, y_0) where $x_0 \neq x_1$.

Thus, the product of two Hausdorff spaces is Hausdorff.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □